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We present a theoretical description of composite nonlinear optical materials having the form of a layered
structure of two or more components that differ both in their linear and nonlinear optical properties. We
assume that the thickness of each layer is much smaller than an optical wavelength. We present explicit
predictions for the second-order nonlinear optical susceptibilities describing second-harmonic generation and
the Pockels effect and for the third-order susceptibility describing the nonlinear index of refraction. We find
that under experimentally realizable conditions the nonlinear susceptibility of such a composite can exceed
those of its constituent materials.

INTRODUCTION

Composite optical materials are an important class of
materials for use in nonlinear optics and electro-optics.
Interest in composite materials stems in part from the fact
that the optical properties of a composite material can dif-
fer significantly from those of its constituent components.
In fact, one of the first theoretical studies of composite ma-
terials was that of Maxwell Garnett,' who considered the
linear response of metallic inclusion particles suspended
in glass or in aqueous solutions and thereby was able to
explain the colors of metallic colloids. Recent work has
extended this analysis to the nonlinear optical case2-10
for both the limit in which nonlinear inclusion particles
are suspended in a linear host2- 6'8 9 and the more general
case in which both the inclusion particles and the host
can respond nonlinearly.7' 10 In our recent investigations
we found that, because of local field effects, there are
many conditions under which a composite can possess
a nonlinear susceptibility that is significantly greater
than those of its constituent components. Other recent
studies have shown that metallic composites with fractal
structures can have large nonlinear susceptibilities '3

In the present paper we present a theoretical analysis
of the nonlinear optical properties of a composite material
having a layered geometry of the form shown schemati-
cally in Fig. 1. The composite is formed of alternating
layers of two different materials possessing linear dielec-

NLtric constants ea and Eb and nonlinear susceptibilities xa
NLand Xb , respectively. (The order of the nonlinearity and

the frequency dependence of the nonlinear susceptibilities
is specified below within the context of each specific case
that is treated.) We assume that the thickness of each
layer is much smaller than an optical wavelength and
consequently that the propagation of light through the
structure can be described in terms of effective linear and
nonlinear optical susceptibilities. In general the thick-
nesses of the layers of materials a and b can be different,

and in fact only the volume fractions fa and fb of the two
components enter into our final results. Although our
analysis is restricted to the case of a composite that is
composed of only two different materials, generalization
to more than two components is straightforward.

Before beginning the detailed mathematical description
of the optical properties of such a composite, we point out
that the results of the analysis depend critically on the
directions of polarization of the interacting light waves.
In particular, if the electric field is polarized in the plane
of the layers (i.e., E 1 2 in the notation of Fig. 1), then
the electric field is spatially uniform within the composite
material (because of the boundary condition that states
that the tangential component of E must be continuous
at an interface); consequently the optical constants of
the composite become simple averages of those of the
constituent materials, that is,

eeff = faea + fbEb, (la)
Xef= fax + fbXb (lb)

On the other hand, if the electric field is polarized per-
pendicular to the plane of the layers (i.e., E 11 ), then the
electric field becomes nonuniformly distributed between
the two components of the composite (because the normal
component of D and not that of E is continuous at the
boundary); a simple calculation shows that the effective
linear dielectric constant is given by

1 = a + fb
eeff Ea Eb

(2)

whereas the effective nonlinear susceptibility is given by
a different expression for each specific process. A conse-
quence of the fact that the electric field is nonuniformly
distributed between the two components is that under
certain circumstances the effective susceptibility of the
composite can exceed those of its constituent materials.
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Fig. 1. Composite optical material with a layered geometry.
The thickness of each layer is assumed to be much smaller than
an optical wavelength.

MESOSCOPIC AND MACROSCOPIC FIELDS
Let us now turn to a more detailed description of the
fields within each layer of the composite material. Using'
lowercase letters to designate quantities measured at the
mesoscopic level (i.e., within one of the layers), we relate
the mesoscopic field (r,t) = e(r, w)exp(-iwt) + c.c. to
the corresponding macroscopic field E through

E(r, ) = f A(r - r')e(r', ) dr', (3)

Using the sum of expressions (6a) and (6b) for the integral
in Eq. (4), we find that

where e denotes the mesoscopic field in medium a; a
similar equation holds for eb. Throughout we drop the
dependence on position in the notation, since all these
quantities may be taken as uniform over distances of the
order of R; thus we also have

From Eq. (7) we see that the x and the y components
satisfy eax(W) = ebX(W) = EX(Ct), eay(C) = eby(w) = Ey(w)
[see the discussion above Eq. (1)], while

where A(r) = A(Irl) is a smoothly varying weighting
function normalized to unity1 4 and extending over a range
R. Previously10 ' 15 we showed that, for R << A, where A
is the vacuum wavelength of light, we have

e(r, W) = E(r, co) + 4 P(r, W)

+ f T°'(r - r')c(Ir - r'I) p(r', w)dr'

4~~~~~~~~~~~~44- p(r, W)), (4)'

where p(r, co) and P(r, co), respectively, are the meso-
scopic and macroscopic polarizations, c(r) is a spherically
symmetric cutoff function of range R, and T(r) is the
static dipole tensor cutoff near the origin, that is

To(r) = {(3fr - U)/r3 r> 77, (5)
(0 r 7

with 7 - 0, U the unit dyadic, and = r/r. For our
case of interest, where a typical thickness I of a layer
satisfies << R, we indicate the range of c(r) by the circle
in Fig. 2(a). Suppose now that point r lies in a layer of
medium a. Then part of the contribution to the integral
in Eq. (4) is the layer in which the point r lies, minus
the small sphere at the origin [Fig. 2(b)]. The two terms
representing these components may easily be evaluated
through use of the laws of electrostatics [recall that T 0(r)
refers to the static dipole tensor], and we have

-4T22 Pa(w) - - 4 Pa(CO) (6a)

where Pa(W) is the polarization in a medium near point
r. Here near refers to distances on the order of R, since
R << A. Since I << R, in evaluating the rest of the
integral in Eq. (4) we may replace the remaining layers by
a uniform polarization equal to P; the electrostatic field
is then that of a sphere minus the contribution from the
missing layer [see Fig. 2(c)],

- - P() - [-4v-;r * P(w)]. (6b)

where for convenience we have introduced

Fz(w) = 47Tfapaz(W) + 4 7fbPb.(Oi). (10)

It is this nontrivial case of a z-polarized field that will be
of interest to us below.

Note that Eq. (4) follows directly from the Maxwell
equations and the assumption that R << A without our
requiring any condition on p(r, w). Thus Eqs. (7)-(10),
which also require I << R for their validity, also hold for
linear or nonlinear optics. Once a model for a relation
between p and e is adopted (see below), linear and nonlin-
ear constitutive relations can be derived. We note that
we may derive Eqs. (7)-(10) from a careful application of
the laws of electrostatics by imagining that the medium is
placed between two capacitor plates [see discussion after
Eq. (1)]. The derivation given here, although longer, is

(a)

(b)

_ I M I

I . Z I 

I _ i / Z

//r

(c)

Fig. 2. Calculation of the mesoscopic and the macroscopic fields.

4
ea(w) = E(w) + 4 7TZZ P(w) - 422 pjw)X (7)

P(O) = faPa(W) + fbPb(o) - (8)

eaz(Wo) = Ez(W) + F,(w) - 4
TPaz(CO),

eb.(w) = E(w) + F(w) - 4 7rPbz(W),

(9a)

(9b)

i
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the one that we prefer: in an experimental geometry of
interest in optics, the quantities in Eqs. (7)-(10) need not
be uniform over a distance of the order of the thickness
of the sample, and they certainly can vary in the xy
plane over distances much smaller than the length of the
sample. Thus the artifice of capacitor plates and a field
that is assumed to be uniform throughout the sample is
somewhat suspect. In the derivation leading to Eq. (7)
we had to assume only that the field was uniform in the
z direction within each layer, of typical thickness 1 << R,
and in the xy plane over lengths R << A; typically R is
much smaller than the size of the sample.

LINEAR RESPONSE

We first specialize the results of the previous section to
the case of a material with linear response by assuming
that the mesoscopic polarizations are given by

Paz(OW) = Xa )(c)eaz(w), Pbz(10) = Xb() (11)

If these expressions are substituted into Eqs. (9) and (10),
we find that the mesoscopic electric fields are given by
the expressions

eaz(OE) = ) [

ebz(0J) = e -
6b (CO [

Ez(w)

fa + Fb(W)

E.(w)

f.w() + Ebb(W)]

(12a)

Through use of Eqs. (11) and (12) the macroscopic
polarization Pz(W) = faPaz(ct) + fbPbz(W) can be cal-
culated. This result can then be expressed in terms
of a linear susceptibility through use of the standard
relation Pz(co) = X(l)(cto)E,(w) or in terms of an effective
dielectric constant through use of the standard definitions
e(co) = 1 + 4,'X(')(w). Such a procedure yields the result

1 fa + fb (13)

'Eeff (CO - o) + E e(tO) ( 3

in agreement with Eq. (2), which was quoted above with-
out proof. Figure 3 shows the dependence of the effective
dielectric constant on the fill fraction fb of component b for
several different values of the ratio eb(w0)/ea(w0) of linear
dielectric constants. Equations (12) for the mesoscopic
electric field can be rewritten in terms of the effective
dielectric constant as

eaz(w) - E eff(0) EZ(w), ebz(W) = Eeff(c) Ez(o). (14)
efa(CO) eb (Wo) ( 4

Note that the ratio Eeff( t)/ea(o) can be interpreted as
the local-field enhancement factor for component a, that
is, the factor by which the mesoscopic field within re-
gion a exceeds the macroscopic electric field. The ratio
eeff(Co)/Eb() can similarly be interpreted as the local-
field enhancement factor for component b. Note that one
of these factors will necessarily be greater than unity.
If the component for which the local-field enhancement
factor exceeds unity displays a nonlinear response, the
effective nonlinear susceptibility of the composite mate-
rial can be enhanced with respect to that of the pure
nonlinear material. Several examples of such behavior
are presented below.

SECOND-HARMONIC GENERATION

Next we consider the process of second-harmonic genera-
tion in a layered composite material. We assume that
in the general case each of the components possesses
a second-order nonlinear susceptibility given by Xa =

X(2) (2 = + co) and x(2 ) = X(
2

)(2co = c + co). For this
and the other nonlinear processes that we consider below,
we work out only the susceptibility components involving
z-polarized light, e.g., X(2)(2w = o + o) = X(2zzz(2c =

W + Wo). It is these terms that generally will exhibit the
largest enhancement. These terms would be relevant,
for example, for the case of TM light propagating along the
layers of the structure. The effective medium coefficients
for susceptibility components involving solely x and y fol-
low from Eq. (lb), while the effective medium coefficients
for susceptibility components involving z as well as x or
y can be derived as indicated below but with the general
Eq. (7) used in place of its z component, Eqs. (9) and (10).

In the present case of second-harmonic generation
the total polarization within component a, correct to
second order in the electric field, can be written as

Paz(2 o0) = X 2)eaz 
2

(0o) + X(1)(2ow)eaz(2w), (15)

where eaz(co) and eaz(2 w) represent the electric fields
within component a at the fundamental and the second-
harmonic frequencies, respectively. In evaluating this
expression we take eaz(2 w) to be given by the gen-
eral expressions (9). However, it is adequate to take
eaz(co), which appears in the first term, to be given
by Eq. (12a), which was derived with the assumption
that the medium possesses only a linear response.
The reason why this is adequate is that the first term
on the right-hand side of Eq. (15) is explicitly second
order in the mesoscopic field eaz(w), and hence only
the linear contribution to eaz(co) need be used. On the
other hand, the second term in Eq. (15) is linear in
eaz(2co), and hence for consistency we must include the
nonlinear contribution to eaz(2cw), which is contained in
the factor Paz(CO) of Eq. (9). We thus obtain the result

Ez(co) 2

Paz(2w) = X(2) ea()[ f + Ab + xa (2c)

a x [Ea(OJ) a(tO) Eb'(t (jj
X [E_(2o) + Fz(2w) - 4'7TPaz( 2 co)]. (16)

4.0

wo 2.0

0.0

0.0 0.5 1.0

fill fractionfb

Fig. 3. Dependence of the effective dielectric constant on the
fill fraction fb of component b.
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Fig. 4. Effective nonlinear susceptibility for second-harmonic
generation plotted versus the fill fraction of component b with
the assumption that only component a possesses a second-order
nonlinear optical response.

This equation can now be solved for paz(2w) to yield

(2)

Paz(2co) = Xa _ _ I r)
'Ea(2co) 'Ea()

fa + fb
ea(0W) eb(CO)

I 2

+ ea(2w) [EZ(2co) + F(2w)]. (17)

susceptibility occurs when the nonlinear component of the
composite (i.e., component a) possesses a linear dielectric
constant that is smaller than that of the other component,
because according to Eq. (14) it is under this condition
that the field within the nonlinear component exceeds
the macroscopic field.

POCKELS EFFECT

We next consider the Pockels electro-optic effect in a
layered composite material. The calculation proceeds
along the same lines as that of the second-harmonic
response. We assume that each of the components
possesses a second-order nonlinear susceptibility given(2 2) (2) =(2)by x= Xa(co = o + 0) and Xb =Xb ( = co + 0); we
assume that charging effects that are due to free carriers
are negligible. We denote the dc fields in media a and b
and the macroscopic dc field by eaz(O), eb,(0), and E,(O),
respectively. The total polarization within component a,
correct to second order in the electric field, can then be
represented as

Paz(@) = 2X 2)eaz(co)eaz(0) + X(1)(ov)eaz(wJ)

2X (2)Ez (coD)Ez (0)

fa+ ' a + ie'b
6a(J)W e a(O) +e b(N) a()L ea(0) eb(0)]

+ Xa )(oi)[Ez(cv) + F,(co) - 4Paz(0A)] (20)
A similar equation holds for bz(

2 w) through the in-
terchange of subscripts a and b. We next calculate
the macroscopic polarization at the second-harmonic
frequency by performing the volume average of the meso-
scopic polarizations as P(2(o) = faPaz(2&) + fPb,( 2 co).
We introduce Eqs. (10) and (11) in order to evaluate the
term Fz(2 w), and we find through explicit calculation that

P(2w) = (2 = v + c)EZ 2(cv) + Xe (2co)Ez(2cv),

(18)

where X 1)(2w) is now given by [eff(2co) - 1]/4-7T, with
eeff given by Eq. (2), and where the effective nonlinear
susceptibility for second-harmonic generation is given by

(2)~~~~~~~~~~~~~~~~2Xeff (2 c = + ))

(2) 2 fbXb)

ea(2w)6a(w) 2 b( 2 o)*b(W) 2 (19)

[tA + fb A + Ab
Lea(w0) eb(C)jea( 2 j) Eb(2C)]

As is generally true for a second-order susceptibility, this
expression displays a third-order dependence on the local
field enhancement factor (eeff/ea for medium a, eeff/eb for
medium b). Figure 4 shows the predicted dependence of
the effective nonlinear susceptibility for second-harmonic
generation on the fill fraction of component b with the
simplifying assumptions that only component a possesses
a second-order linear response and that the linear
dielectric constants are not frequency dependent, that is,
that a(W) =Ea(2t) and b(W) Eb(

2
W). Note that under

realistic conditions the nonlinear susceptibility of the
composite can exceed that of the nonlinear component by a
factor of approximately 3. Enhancement of the nonlinear

where, as in Eq. (16), we have included the nonlinear
contribution to the mesoscopic field in the second term
in this expression but not in the first in order that both
contributions be correct to second order in the applied
field amplitude. We now solve the second form of this
equation for Paz(&)) to obtain

Paz (W)= =2Xa _ea(0v)[
x

E-(w)

fa + fb 1
Ea(C) Eb()J

E (0)

a( ) fa + 1
e6(O) eb ()j

+ Xa ((c) [EZ(o) + F ( )]. (21)

A similar equation holds for Pbz(W) through the inter-
change of subscripts a and b. We next calculate the
macroscopic polarization at the optical frequency by per-
forming the volume average to obtain P.,(w) = fapaz(w) +
fbpbz(v)- We find through explicit calculation that

Pz(Cw) = 2Xff ( = + )E(&w)E2 (O) + X( f)Ef(c),
(22)

where the effective nonlinear susceptibility describing the
Pockels effect is given by

x(w = w + 0) = 

f (2) (b~2)
faXat2 + fbxb~

'Ea (0)Ea ((D) 2 E6b (O) b (W)2

Ea + f+ b lFA + fb 1
Ea + eb(W) LEa(0) Eb()j

(23)

I I I

Eb /ea= 4

2

1
- 0.I I - I
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Fig. 5. Effective nonlinear susceptibility for the Pockels effect
plotted versus the fill fraction of component b, with the assump-
tion that only component a possesses a second-order nonlinear
optical response.

If we make the simplifying assumptions that only com-
ponent a responds nonlinearly and that the dc and the
optical-frequency linear dielectric constants are equal,
that is, that a(0) = a(W) and b(O) = eb(w), then the
predictions of Eq. (23) are identical to those displayed
in Fig. 4 for second-harmonic generation. However, in
practice dc dielectric constants span a much larger range
than optical-frequency dielectric constants, and for this
reason it generally is not a good approximation to ignore
the frequency dependence of the linear dielectric constant.
Figure 5 shows the dependence of the effective nonlinear
susceptibility on the fill fraction of component b for this
more general case. Note that the much larger enhance-
ments in the effective susceptibility are possible in this
case.

NONLINEAR REFRACTIVE INDEX

Similar reasoning can be used for calculating the non-
linear optical susceptibility that describes the nonlinear
refractive index. In this case we assume that each com-
ponent of the composite is described by a third-order
nonlinear susceptibility of the form Xa Xa3)( = CO +

- o) and Xb = Xb3)( = Cw + co - Co). The total
polarization within component a, correct to third order
in the electric field, can then be represented as

Paz(W) = 3Xa

IE,(ow)I2E ((L)

fa.+ fb _ a A)

Lea(wO) eb(0) L Ea(W)+ XaM(co)[E,(o)) + F2(co) -4Paz((0)],(24)

where, as in Eqs. (16) and (20), we have included the non-
linear contribution to the mesoscopic field in the second
term in this expression but not in the first, in order that
both contributions be correct to third order in the applied
field amplitude. We now solve this equation for paz((o)

to obtain

p 3X(3Paz(W) = 
Ea(CO)

fa +fblfa Ffa + fbi.
Ca (OJ) -a(W) Ea(W) ' ) 1Eb(0),eaa) eb()JL -,W!eba)

+ Xa (w) [E-(w) + F_(,w)], (25)

A similar equation holds for Pbz(CO) through the inter-
change of subscripts a and b. We next calculate the
macroscopic polarization by performing a volume average
of the mesoscopic polarization as P.(M) = faPaz(W) +
fbpbz(-). We then find through explicit calculation that
the macroscopic polarization can be represented as

P_((o) = 3X(w)( = + w - I)jE,(w)&2E,(w)

+ x()(oi)Ez(w), (26)

where the effective nonlinear susceptibility describing the
nonlinear refractive index is given by

Xeff() = (0 + 0j - w)

f(3) f (3)fa~~a3 + Afb
3

1Ea(C)I
2 Ea(,W)2 IEb(W)[2 Eb(W)2

|fa + b A r __ + eAfb
I ea(CO) 6b (O) L a(') 4b(60) 

(27)

As is generally true for a third-order susceptibility, this
result shows a fourth-order dependence on the local-field
enhancement factor. The predictions of this equation are
presented in Fig. 6 with the assumption that only compo-
nent a possesses a third-order nonlinear optical response.
Note that nearly an order-of-magnitude enhancement of
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Fig. 6. Effective nonlinear susceptibility describing the nonlin-
ear refractive index plotted versus the fill fraction of compo-
nent b with the assumption that only component a possesses a
third-order nonlinear optical response.

the nonlinear optical susceptibility is predicted under
realistic experimental conditions.

For some purposes it is more convenient for us to
describe the nonlinearity in the refractive index in terms
of the parameter n2, which is defined through the relation
n = no + n2 I and which is related to the third-order
susceptibility through the relation

12iT2 3
n2 = 2 X(W = c + - ) (28)

Note that n2 increases with the fill fraction fb less rapidly
than does X(3) because of the factor n0

2 [which is equal
to ef6 of Eq. (2)] that appears in the denominator of this
expression. In fact, we can see by comparison of Eqs. (2),
(19), (27), and (28) that the dependence of n2 on fb is
identical to that of x(2). Thus Fig. 4 can also be used
to predict the enhancement of n2

DISCUSSION

The analysis presented in this paper can be applied to
any layered composite structure, such as those formed by
vacuum evaporation, by Langmuir-Blodgett techniques,
or by spin coating. The analysis predicts that the effec-
tive nonlinear susceptibility of the composite can, under
proper circumstances, exceed those of the constituent ma-
terials. Such an enhancement occurs if the component
with the larger nonlinear response possesses the smaller
linear dielectric constant. An example of such a situation
is that of a composite material formed of layers of a
nonlinear optical polymer alternating with layers of an
inorganic oxide, such as titanium dioxide, the refractive
index of which can be as large as 2.8, depending on the
crystal structure and porosity of the layer.

We emphasize that the enhancements predicted here
are not interference effects, at least not in the usual
sense of that term. In particular, they do not require a
regular spacing of the layers, nor indeed do they depend
on the thicknesses of the individual layers (as long as
they are much smaller than the wavelength of light), but
only on the fill fractions of the individual components.
Indeed, even f the layejeq were to vary in thlekness, but
over lengths on the order of many wavelengths of light,
we would expect the effective medium parameters to be
uniform if the fill fractions were.

Nonetheless, it is of course true that the techniques
of thin-film optics can be applied to calculation of the
nonlinear response of a multilayer film (see e.g., the
work of Bethune16 ). In such a calculation the fields
must be determined by the solution of a set of transfer-
matrix equations, with the field calculated in any given
layer for the specific incident field at hand. Such an
approach is necessary if the layer thicknesses are of the
order of the wavelength of light; true interference effects
then become important. But if the layer thicknesses
are much less than the wavelength of light then the
approach that we take here, that of treating the multi-
layer structure as a uniform effective medium, is possible
and of course simplifies any calculation. Still, we may
use the transfer-matrix solutions to investigate when the
approximations that we rely on break down. Taking as
our criterion the condition that the actual phase change
across a layer of thickness be '/4(27-), for a normally
incident field we require that 1 ' A/4n, where A is the
wavelength of light in vacuum at any of the frequencies
of interest and n is the refractive index of the layer.
The condition is somewhat less stringent for nonnormal
incidence or for a guided wave. The same length scale
sets the distance over which effects that are due to surface
roughness would lead to strong light scattering.

In our previous publication 0 we presented a theoretical
analysis of a composite having the Maxwell Garnett ge-
ometry, that is, a material composed of spherical inclusion
particles embedded in a host material. We note that
the layered geometry possesses an anisotropic optical
response and that for fields polarized perpendicular to
the plane of the layers we obtain a larger enhancement
than in the Maxwell Garnett case, whereas for fields
polarized along the layers we obtain no enhancement
at all. Another difference is that the validity of our
Maxwell Garnett calculation was restricted to fill factors
much less than unity, whereas for the simpler geometry of
the layered structure we obtain results that are valid for
all possible values of the fill factors of the two components.
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